Overview
Welcome to this GitHub repository which hosts ctsmTMB (Continuous Time Stochastic Modelling using Template Model Builder), the intended successor of, and heavily inspired by, the CTSM package (Continuous Time Stochastic Modelling). The purpose of the package is to facilitate a user-friendly tool for (state and parameter) inference, and forecasting, in (multi-dimensional) continuous-discrete stochastic state space systems, i.e. systems on the form
Here the latent state evolves continuously in time, governed by a set of stochastic differential equations, and information about the system is available at discrete times through the observations .
The ctsmTMB package is essentially wrapper around the TMB/RTMB packages (Template Model Builder) that provide automatic differentiation of the likelihood function, and access to other computational tools such as the Laplace approximation. The likelihood function is constructed based on the (symbolic) user-provided state space equations, which may be specified using the implemented OOP-style R6 ctsmTMB
class, with methods such as addSystem
(for defining system equations), and addObs
(for defining observation equations).
The primary work-horse of ctsmTMB is the estimate
method, which carries out inference by minimizing the (negative log) likelihood using the stats::nlminb
quasi-Newton optimizer. The resulting object contains the maximum likelihood parameter and state estimates, and associated marginal uncertainties. The available inference methods are the Linear and Extended Kalman filters in addition to filtration (actually smoothing) using a Laplace approximation approach.
The package facilities forecasting through the predict
(moment forecasts) and simulate
(stochastic path simulations) methods. The calculations for these may be carried out in either R (default) or for additional speed in C++ using Rcpp
.
Estimation Methods
The following state reconstruction algorithms are currently available:
The Linear Kalman Filter,
lkf
.The Extended Kalman Filter,
ekf
.The Unscented Kalman Filter,
ukf
.The Laplace Smoothers
laplace
andlaplace.thygesen
.
Kalman Filters
The package is currently mostly tailored towards the Kalman Filter. The advantages of the methods are:
The hessian of the likelihood function (w.r.t the fixed parameters) is available.
The model residuals are easier to compute for e.g. model validation.
Multi-step predictions / simulations with state updates are easier to compute.
The Unscented Kalman Filter implementation is based on Algorithm 4.7 in S. Särkkä, 2007.
Laplace Smoother
The state-reconstructions based on the laplace
(approximation) method are smoothed estimates, meaning that states are optimized jointly conditioned on all observations. The Laplace approximation is natively built-into and completely handled by TMB. The additional method laplace.thygesen
is an implementation of the the stability-improved laplace method for systems with state-dependent diffusion and is due to Thygesen, 2025.
A particular advantage of the Laplace smoother is:
- The possibility for unimodal non-Gaussian observation densities to accommodate the need for e.g. heavier distribution tails. Not yet implemented.
Installation (Compilers)
NOTE: YOU NEED TO MAKE SURE YOU HAVE A WORKING C++ COMPILER IN R TO INSTALL THE PACKAGE!!
Windows
C++ compilation in R requires Rtools:
Go to https://cran.r-project.org/bin/windows/Rtools/ and find the latest version.
Go to “Control Panel -> System ->”Advanced” (tab) -> “Environment Variables” -> Highlight “Path” -> “Edit” -> Add to the character string in “Variable Value” the path to your Rtools folder **C:;C:*.
Installation (Package)
The package can be installed from source from CRAN:
install.packages("ctsmTMB", type="source")
The development version is available on GitHub and R-universe:
remotes::install_github(repo="phillipbvetter/ctsmTMB", dependencies=TRUE)
install.packages('ctsmTMB', repos = c('https://phillipbvetter.r-universe.dev'), type="source")
If you encounter problems with a locked folder 00LOCK-ctsmTMB
due to a previously failed installation remove it before reinstalling
# Enter the path on your system
enter.your.path <- "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-ctsmTMB"
unlink(enter.your.path, recursive = TRUE)
Test Installation
Once you have installed the package is it a good idea to test whether TMB and C++ compilation works. You should be able to run all examples without compilation errors:
library(TMB)
runExample(all=TRUE)
For further information see the TMB GitHub and its associated installation instructions.
Getting Started
You can visit the package webpage and browse the vignettes for example uses, in particular see Getting Started.
Documentation
You can access the documentation for all methods with
?ctsmTMB
The methods documentation is also available on the package homepage.
Code Example - Inference in 1D Ornstein-Uhlenbeck Process
library(ggplot2)
library(patchwork)
# library(dplyr)
library(reshape2)
library(ctsmTMB)
############################################################
# Data simulation
############################################################
# Simulate data using Euler Maruyama
set.seed(20)
pars = c(theta=10, mu=1, sigma_x=1, sigma_y=0.1)
#
dt.sim = 1e-3
t.sim = seq(0,5,by=dt.sim)
dw = rnorm(length(t.sim)-1,sd=sqrt(dt.sim))
u.sim = cumsum(rnorm(length(t.sim),sd=0.05))
x = 3
for(i in 1:(length(t.sim)-1)) {
x[i+1] = x[i] + pars[1]*(pars[2]-x[i]+u.sim[i])*dt.sim + pars[3]*dw[i]
}
# Extract observations and add noise
dt.obs = 1e-2
ids = seq(1,length(t.sim),by=round(dt.obs / dt.sim))
t.obs = t.sim[ids]
y = x[ids] + pars[4] * rnorm(length(t.obs))
# forcing input
u = u.sim[ids]
# Create data
.data = data.frame(
t = t.obs,
y = y,
u = u
)
############################################################
# Model creation and estimation
############################################################
# Create model object
model = ctsmTMB$new()
# Add system equations
model$addSystem(
dx ~ theta * (mu-x+u) * dt + sigma_x*dw
)
# Add observation equations
model$addObs(
y ~ x
)
# Set observation equation variances
model$setVariance(
y ~ sigma_y^2
)
# Add vector input
model$addInput(u)
# Specify parameter initial values and lower/upper bounds in estimation
model$setParameter(
theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = c(initial=1e-1, lower=1e-10, upper=30)
)
# Set initial state mean and covariance
model$setInitialState(list(x[1], 1e-1*diag(1)))
# Carry out estimation with default settings (extended kalman filter)
fit <- model$estimate(data=.data, method="ekf")
# Check parameter estimates against truth
p0 = fit$par.fixed
cbind(p0,pars)
# Create plot of one-step predictions, simulated states and observations
t.est = fit$states$mean$prior$t
x.mean = fit$states$mean$prior$x
x.sd = fit$states$sd$prior$x
plot1 = ggplot() +
geom_ribbon(aes(x=t.est, ymin=x.mean-2*x.sd, ymax=x.mean+2*x.sd),fill="grey", alpha=0.9) +
geom_line(aes(x=t.est, x.mean),col="steelblue",lwd=1) +
geom_line(aes(x=t.sim,y=x)) +
geom_point(aes(x=t.obs,y=y),col="tomato",size=0.5) +
labs(title="1-Step State Estimates vs Observations", x="Time", y="") +
theme_minimal()
# Predict to obtain k-step-ahead predictions to see model forecasting ability
pred.list = model$predict(data=.data,
k.ahead=10,
method="ekf",
)
# Create plot all 10-step predictions against data
pred = pred.list$states
pred10step = pred %>% dplyr::filter(k.ahead==10)
plot2 = ggplot() +
geom_ribbon(aes(x=pred10step$t.j,
ymin=pred10step$x-2*sqrt(pred10step$var.x),
ymax=pred10step$x+2*sqrt(pred10step$var.x)),fill="grey", alpha=0.9) +
geom_line(aes(x=pred10step$t.j,pred10step$x),color="steelblue",lwd=1) +
geom_point(aes(x=t.obs,y=y),color="tomato",size=0.5) +
labs(title="10 Step Predictions vs Observations", x="Time", y="") +
theme_minimal()
# Perform prediction ignoring all data
pred.list = model$predict(data=.data,method="ekf")
# Perform simulation ignoring all data
sim.list = model$simulate(data=.data, method="ekf", n.sims=10)
# Collapse simulation data for easy use with ggplot
sim.df = sim.list$states$x$i0 %>%
select(!c("i","j","t.i","k.ahead")) %>%
reshape2::melt(., id.var="t.j")
# Plot all simulations and the prediction against observations
plot3 = ggplot() +
geom_line(data=sim.df, aes(x=t.j, y=value, group=variable),color="grey") +
geom_line(aes(x=pred.list$states$t.j,y=pred.list$states$x),color="steelblue") +
geom_point(aes(x=t.obs,y=y),color="tomato",size=0.5) +
labs(title="No Update Prediction and Simulations vs Observations", x="Time", y="") +
theme_minimal() + theme(legend.position = "none")
# Create plot
p1 <- patchwork::wrap_plots(plot1, plot2, plot3, ncol=1)
# Create one-step-ahead residual analysis plot
p2 <- plot(fit)
# Wrap both plots
patchwork::wrap_plots(p1,p2[[1]], ncol=2)
Bibliography
U. H. Thygesen and K. Kristensen (2025), “Inference in stochastic differential equations using the Laplace approximation: Demonstration and examples”. In: arXiv:2503.21358v2.
S. Särkkä, “On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems”. In: IEEE Transactions on Automatic Control, 52(9), 1631-1641.