Skip to contents

Basic print of objects ctsmTMB fit objects

Usage

# S3 method for class 'ctsmTMB.fit'
print(x, ...)

Arguments

x

a ctsmTMB fit object

...

additional arguments

Value

Print of ctsmTMB fit object

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(
  theta   = c(initial = 1, lower=1e-5, upper=50),
  mu      = c(initial=1.5, lower=0, upper=5),
  sigma_x = c(initial=1, lower=1e-10, upper=30),
  sigma_y = 1e-2
)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)
#> Checking model components...
#> Checking and setting data...
#> Constructing objective function and derivative tables...
#> Minimizing the negative log-likelihood...
#>   0:     160.35328:  1.00000  1.50000  1.00000
#>  10:     89.603625:  2.58436  2.91384  1.15608
#> 	 Optimization finished!:
#>             Elapsed time: 0.013 seconds.
#>             The objective value is: 7.387879e+01
#>             The maximum gradient component is: 9.9e-08
#>             The convergence message is: relative convergence (4)
#>             Iterations: 19
#>             Evaluations: Fun: 29 Grad: 20
#>             See stats::nlminb for available tolerance/control arguments.
#> Returning results...
#> Finished!

# print fit
print(fit)
#> Coefficent Matrix 
#>         Estimate Std. Error t value  Pr(>|t|)    
#> theta   5.140485   0.539245  9.5327 < 2.2e-16 ***
#> mu      3.005177   0.056661 53.0380 < 2.2e-16 ***
#> sigma_x 1.271765   0.071374 17.8183 < 2.2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1